BPTT — это метод обучения рекуррентных нейронных сетей (RNN), который использует обратное распространение ошибки для корректировки весов. Для этого сеть разворачивается во времени, представляя последовательные временные шаги как копии нейронки. На каждом шаге вычисляется ошибка, которая затем передаётся назад через временные шаги для обновления весов.
В преимущества BPTT записывают более быстрое обучение по сравнению с другими методами оптимизации. К недостаткам относят сложности с локальными минимумами.
BPTT — это метод обучения рекуррентных нейронных сетей (RNN), который использует обратное распространение ошибки для корректировки весов. Для этого сеть разворачивается во времени, представляя последовательные временные шаги как копии нейронки. На каждом шаге вычисляется ошибка, которая затем передаётся назад через временные шаги для обновления весов.
В преимущества BPTT записывают более быстрое обучение по сравнению с другими методами оптимизации. К недостаткам относят сложности с локальными минимумами.
#глубокое_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.
Библиотека собеса по Data Science | вопросы с собеседований from br